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Background aims: Chimeric antigen receptor (CAR) T-cell therapy can be associated with significant toxicities.
CAR-engineered natural killer (NK) cells provide a safer alternative while maintaining anti-tumor effects.
Activated NK (aNK) cells are a clinical-grade cellular product obtained from the NK-92 cell line that have
demonstrated both safety and potent cytotoxicity toward a wide range of cancers in phase 1 trials. Geneti-
cally engineered variants of aNK cells expressing a high-affinity Fc receptor (haNK) or co-expressing a CAR
(t-haNK) are currently in phase 1/2 clinical trials. A key factor in the efficacy of cellular immunotherapies is

léz{Words. biodistribution and tumor infiltration, which affect the local effector:target ratio. The chemokines CCL19 and
immunotherapy CCL21 can drive recruitment of CCR7 receptor-expressing immune cells to secondary lymphoid organs.
lymphoma Methods: Since NK-92 cells do not spontaneously express CCR7, clinical-grade aNK cells were transfected
migration with a non-viral vector containing the CCR7 receptor, an anti-CD19 CAR and a high-affinity CD16 Fc receptor.
NK cells Results: CCR7-engineered CD19 t-haNK showed significant migration in vitro toward K562 cells engineered to
secrete CCL19. This observation was confirmed in a NOD.Cg-Prkdc*™ [12rg™"i/Sz] (NSG) mouse model in
which subcutaneous tumors of CCL19-expressing K562 cells displayed a higher number of infiltrating
CCR7_CD19 t-haNK cells than CCR7-negative CD19 t-haNK cells. In NSG mice inoculated either intravenously
or subcutaneously with CCL19-secreting Raji cells, treatment with CCR7_CD19 t-haNK improved survival
and tumor control compared with CD19 t-haNK or vehicle.
Conclusions: Expression of CCR7 receptor by off-the-shelf t-haNK cells improves their homing toward lymph
node chemokines both in vitro and in vivo, resulting in superior tumor control.
© 2022 International Society for Cell & Gene Therapy. Published by Elsevier Inc. All rights reserved.
Introduction inflammation [2]. These mechanisms can be hijacked by tumor cells,

and a number of ligands for chemokine receptors of the CXCR and

An important component in the efficacy of cellular immunothera-
pies is the ability of the infused immune cells to reach and recognize
their malignant target. Equipping T lymphocytes with a chimeric
antigen receptor (CAR) that recognizes and binds to a surface recep-
tor on malignant cells has been shown to improve in vitro cytotoxic-
ity. This has translated into disease remissions and improved
outcomes, especially in patients with lymphoma and myeloma [1]. It
is generally assumed that an increase in effector to target (E:T) ratio
at the tumor site will increase malignant cell death, provided that the
surrounding tissue does not restrict access to tumor cells.

Immune cells express a variety of adhesion molecules and chemo-
kine receptors that direct their migration toward specific organs or
tissues under homeostatic conditions as well as toward sites of
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CCR family of molecules have been identified as being involved in
tumor metastasis [3,4]. The chemokine receptor CCR7 and its ligands
CCL19 and CCL21, which are involved in homing of immune cells to
secondary lymphoid tissues [5], are also involved in tumor progres-
sion and lymph node metastasis in both solid and liquid cancers [6].
In addition, expression of CCL19 and CCL21 has been shown to be
upregulated in secondary lymphoid tissue in follicular lymphoma [7].

Natural killer (NK) cells have potent anti-tumor properties [8],
and augmented expression of CCR7 on NK cells has been shown to
enhance both homing to lymph nodes and anti-tumor activity in
human lymphoma tumor models [9—11]. It is unknown, however,
whether NK cells that have been modified to express a CAR targeting
lymphoma cells, such as CD19, would exhibit additional anti-tumor
efficacy if they have also been genetically engineered to overexpress
CCR7.

Continuously growing activated NK (aNK) cells, which are a clini-
cal-grade cellular product obtained from the human NK-92 cell line,
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present an unlimited supply of source material for NK cells that can
be genetically engineered, expanded in vitro and cryopreserved
[12—14]. aNK cells have completed multiple phase 1 studies, and
their safety and efficacy in patients with advanced cancer have been
well documented [15-18]. Moreover, aNK cells have been engi-
neered to express a high-affinity FcyRIlla receptor (CD16-158V) as
well as ERIL-2 [19,20]. These haNK cells display increased antibody-
dependent cellular cytotoxicity (ADCC) properties when combined
with tumor-targeted monoclonal antibodies [21,22]. The addition of
an intracellular retention sequence to IL-2 (ERIL-2) sequesters the
cytokine inside the cell while maintaining autocrine stimulation [23],
thereby allowing haNK cells to grow independently of exogenous IL-
2. haNK cells, in combination with avelumab, are currently in clinical
trials in patients with Merkel cell carcinoma (NCT03853317) [22].

To further drive tumor-targeted specificity, aNK cells have been
engineered to co-express various CARs in addition to CD16-158V.
These t-haNK cells display dual targeting abilities, either CAR-medi-
ated or via ADCC. A t-haNK expressing PD-L1 CAR [24] is currently in
a phase 1/2 trial in patients with advanced pancreatic or breast can-
cer and is demonstrating its safety as well as showing some initial
favorable responses. In addition, Burger et al. [25] are currently con-
ducting a study with intra-tumoral HER2/neu-engineered aNK cells
in patients post-surgery for glioblastoma.

Here the authors present data suggesting that further engineering
of a CD19 CAR t-haNK line to express a CCR7 receptor augments
migration toward CCL19-expressing lymphoma cells both in vitro
and in vivo. Systemic injection of CCR7_CD19 t-haNK cells in NOD.Cg-
Prkdcsc® [12rg™ it |Sz] (NSG) mouse lymphoma models controlled
both subcutaneous tumor growth and systemic disease and resulted
in improved survival of animals compared with CD19 t-haNK cells
not expressing the CCR7 homing receptor.

Methods
Ethical approval

This study was conducted according to the guidelines of the Dec-
laration of Helsinki and approved by the Institutional Animal Care
and Use Committee of the Los Angeles Biomedical Research Institute
and The Lundquist Institute (protocol 21565-03, approved April 1,
2017).

Cell lines and culture conditions

K562, Raji and SUP-B15 cells were obtained from American Type
Culture Collection (Manassas, VA, USA). K562 and Raji cells were cul-
tured in Roswell Park Memorial Institute 1640 medium (Thermo
Fisher Scientific, Waltham, MA, USA) supplemented with 10% fetal
bovine serum (Thermo Fisher Scientific). SUP-B15 cells were grown
in the same medium with the addition of 0.2 mM f-mercaptoethanol
(Thermo Fisher Scientific). aNK cells were grown in X-VIVO 10
medium (Lonza, Walkersville, MD, USA) supplemented with 5%
human AB serum (Access Biologicals, Vista, CA, USA) and 500 IU/mL
rhIL-2 (Proleukin; Prometheus Biosciences, San Diego, CA, USA).
CCR7-positive or CCR7-negative CD19 t-haNK cells were generated
by electroporation (Neon Transfection System; Thermo Fisher Scien-
tific) of aNK cells with a linear DNA fragment encoding tricistronic
(CD19CAR/CD16_158V/ERIL-2) or quadricistronic (CCR7/CD19CAR/
CD16_158V/ERIL-2) expression cassettes under the control of an
EFla promoter. Electroporated cells were immediately transferred
into X-VIVO 10 supplemented with 5% human AB serum without IL-
2. CCL19-expressing K562 and Raji cell lines were generated by trans-
duction of the corresponding parental cells with a lentiviral vector
(System Biosciences, Palo Alto, CA, USA) encoding full-length human
CCL19. The resulting cell lines are referred to as K562°'° and
Raji®“'® in this article. The SUP-B15P19KO/CD20* ce|l Jine was

generated by transduction of SUP-B15 cells with a lentiviral vector
(System Biosciences) encoding full-length human CD20 followed by
purification of CD20+ SUP-B15 cells by magnetic bead column sepa-
ration (MACS; Miltenyi Biotec, Auburn, CA, USA). Purified cells
(>90%) were then transduced with a lentiviral vector encoding the
Cas9 nuclease (PerkinElmer, Waltham, MA, USA) and electroporated
with a guide RNA targeting CD19. Cells then underwent negative sep-
aration of CD19- cells by magnetic bead column separation (Miltenyi
Biotec).

Antibodies and reagents

The following antibodies were used for immunophenotyping:
anti-CCR7 (BioLegend, San Diego, CA, USA), anti-CD16 (BD Bioscien-
ces), anti-Fab (Jackson ImmunoResearch, West Grove, PA, USA) and
streptavidin—allophycocyanin (Invitrogen, Waltham, MA, USA). Rit-
uximab (Rituxan [anti-CD20]) and trastuzumab (Herceptin [anti-
HER2/neu]) were purchased from Genentech, Inc. (South San Fran-
cisco, CA, USA). Stained cells were analyzed using an IntelliCyt iQue
Screener PLUS (Sartorius, Cambridge, MA, USA).

Cytotoxicity and ADCC assays

In vitro cytotoxicity assays were performed as previously pub-
lished [26]. Briefly, target cells (K562, SUP-B15 and SUP-B15P19K0/
€D20+) were stained with 0.1 uM carboxyfluorescein succinimidyl
ester (CFSE) (Thermo Fisher Scientific) and co-incubated with effector
cells (aNK, CD19 t-haNK or CCR7_CD19 t-haNK) at various E:T ratios
for 4 h at 37°C in a 5% carbon dioxide (CO,) incubator. Cells were
then stained with 10 mM propidium iodide (PI) (Sigma-Aldrich, St
Louis, MO, USA) for 10 min and analyzed using an IntelliCyt iQue
Screener PLUS. Percentage killing of target cells was calculated using
the following formula: [(%PI+ CFSE+ cells in sample) — (%PI+ CFSE+
cells in targets alone)] / [100 — (%PI+ CFSE+ cells in targets alone)] *
100. For ADCC assay, CFSE-stained target cells were first incubated
with 2 pwg/mL antibody (rituximab or trastuzumab) for 20 min at
room temperature before being co-incubated with CD19 t-haNK or
CCR7_CD19 t-haNK effector cells at various E:T ratios for 4 h at 37°C
in a 5% CO, incubator in the presence of antibody.

In vitro migration assay

A modified Boyden chamber assay was performed using a Matri-
gel-coated, 8-um-pore Transwell (Corning BioCoat Matrigel Invasion
Chamber; Thermo Fisher Scientific). K562 or K562°"1° cells were
resuspended in reduced serum medium (X-VIVO 10 + 1% human AB
serum) and seeded in triplicate in the bottom chamber at a density of
2.5 x 10% cells per well. CFSE-labeled aNK or CCR7_CD19 t-haNK cells
were resuspended in the same medium and seeded in the upper
chamber at a cell density of 1 x 10* cells per well. The plate was incu-
bated overnight at 37°C in a 5% CO, incubator. Cells in the bottom
chamber were then collected, and CFSE+ cells were counted using a
MACSQuant Analyzer flow cytometer (Miltenyi Biotec). Migration
was determined by calculating the ratio: (#CFSE+ cells in well with
K562C<119) | (#CFSE+ cells in well with K562).

In vivo migration assay

NSG mice were obtained from The Jackson Laboratory (Bar Har-
bor, ME, USA) and housed in accordance with Los Angeles Biomedical
Research Institute standard operating procedures and AAALAC guide-
lines. A cohort of 16 mice was injected subcutaneously with 1 x 10°
K562°<L19 cells resuspended in a 1:1 mix of serum-free Roswell Park
Memorial Institute 1640 medium and Matrigel prior to injection.
When tumors became measurable (approximately 100 mm?), half of
the cohort (n = 8) was injected via the tail vein with 1 x 107 CFSE-
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labeled CD19 t-haNK cells, whereas the other half (n = 8) was injected
with 1 x 107 CSFE-labeled CCR7_CD19 t-haNK cells. At 3 h and 24 h
post-intravenous infusion, four mice per time point were euthanized,
and tumors from both sides were resected and dissociated using a
collagenase/hyaluronidase mix (STEMCELL Technologies, Vancouver,
Canada) for 2 h at 37°C followed by ammonium chloride, tryp-
sin—ethylenediaminetetraacetic acid, dispase (5 mg/mL) and DNase I
(1 mg/mL) treatment (STEMCELL Technologies). The cell suspension
was passed through a 40-um cell strainer to remove large debris and
analyzed by flow cytometry to quantify the number of CSFE+ cells.
One processed tumor sample from the 3-h post-infusion group in the
CD19 t-haNK arm yielded too few cells for analysis and was therefore
removed from the study.

In vivo lymphoma model

In order to create a model of systemic lymphoma disease, NSG
mice were injected intravenously with 1 x 108 Raji““'!® cells. After 3
days, mice were randomly assigned to three cohorts and treated with
twice-weekly intravenous injection of 1 x 107 CCR7_CD19 t-haNK
cells (n = 10), CD19 t-haNK cells (n = 10) or vehicle control (n = 10)
for up to four consecutive weeks. Mice were monitored daily for
external signs of disease over a period of 32 days. In order to create a
model of localized lymphoma, NSG mice were injected subcutane-
ously on one flank with 2.5 x 10° Raji““'!® cells. When tumor size
reached an average of approximately 190 mm?, mice were randomly
assigned to three cohorts x003Dand treated with twice-weekly intra-
venous injection of 1 x 107 CCR7_CD19 t-haNK cells (n = 10), CD19 t-
haNK cells (n = 10) or vehicle control (n = 10) for up to two consecu-
tive weeks. Tumor size was measured every 3—4 days, and tumor vol-
ume was calculated using the formula (L x W?)/2. Mice were
euthanized when tumor size exceeded 2000 mm?>. Tumor growth
inhibition (TGI) was calculated using the formula (TC — Tt) /
ATC x 100%, where TC and Tt are average tumor volume for the con-
trol and treatment groups, respectively, at a specific time point and
ATC is the change in average tumor volume in the control group.

Statistical analysis

Statistical analyses were performed using Prism (GraphPad Soft-
ware, San Diego, CA, USA). P values for cytotoxicity, ADCC, in vitro
migration assays and subcutaneous tumor size at day 9 were calcu-
lated using a Student’s t-test. P values for in vivo migration assays
were calculated using a one-way analysis of variance followed by
multiple comparison by Tukey test. P values for subcutaneous tumor
size were calculated using a two-way analysis of variance followed
by multiple comparison by Tukey test. P values for survival assay
were calculated using a log-rank (Mantel—Cox) test.

Results

CCR7_CD19 t-haNK cells co-express CCR7, CD19CAR and CD16(158V)
receptors

The authors generated a quadricistronic non-viral expression vec-
tor containing the human CCR7 chemokine receptor, a CAR targeting
CD19, the 158V high-affinity variant of CD16 and an endoplasmic-
retained IL-2. The four genes were separated by 2A ribosomal skip
sequences or by an internal ribosome entry site, which allowed trans-
lation of all four proteins from a single messenger RNA transcript
under the control of the EF1a promoter. The CD19 CAR is a first-gen-
eration construct comprising an immunoglobulin heavy chain signal
peptide, a single-chain variable fragment domain derived from
CD19-specific antibody FCM63 [27], a CD8 hinge region, the trans-
membrane domain of CD28 and the intracellular region of the signal-
ing protein FceRly. A tricistronic version of the expression vector

without CCR7 was also generated. The linearized expression vectors
were transfected into aNK cells by electroporation, and the cells were
subsequently cultured in the absence of exogenous IL-2 for selective
expansion of the transfected cells. As shown in Figure 1, over 85% of
the expanded transfected cells co-expressed all three surface recep-
tors (CCR7, CD19CAR and CD16).

CCR7_CD19 t-haNK cells display efficient CAR-directed killing and ADCC
against NK-resistant cell lines

In order to verify whether the expressed CD19 CAR and CD16 sur-
face receptors were functional and whether co-expression of the var-
ious transgenes had altered the cytolytic properties of aNK cells, in
vitro cytotoxicity assays were performed with the NK-sensitive
CD19- K562 cell line or the NK-resistant CD19+ SUP-B15 cell line.
After incubation for 4 h, aNK, CD19 t-haNK and CCR7_CD19 t-haNK
cells displayed efficient and comparable killing of K562 target cells
(88.5 & 6.8%, 75.7 + 5.3% and 85.1 + 3.4%, respectively, at an E:T ratio
of 10:1) (Figure 2A). CCR7_CD19 t-haNK and CD19 t-haNK cells were
equally able to efficiently kill SUP-B15 target cells (89.0 + 6.4% and
88.7 £ 3.3%, respectively, at an E:T ratio of 10:1 compared with 13.4
+ 6.5% for aNK cells) (Figure 2B), indicating that co-expression of
CCR7 did not affect CAR-mediated killing activity. In vitro ADCC
assays were performed by co-incubating effector cells with a HER2/
neu—, CD19—, CD20+ variant of the SUP-B15 cell line in the presence
of rituximab (anti-CD20) or trastuzumab (anti-HER2/neu). As shown
in Figure 2C and D, CD19 t-haNK and CCR7_CD19 t-haNK cells were
able to specifically kill SUP-B15P19KO/CD20+ target cells in combina-
tion with rituximab (82.1 & 2.7% and 71.4 4 4.9%, respectively, at an
E:T ratio of 10:1), but not in combination with trastuzumab (<17.8 &
5.0%), indicating that co-expression of CCR7 did not affect the ability
of CD16 to mediate ADCC.

CCR7_CD19 t-haNK cells show increased migration toward CCL19-
secreting K562 cells in vitro and in vivo

In order to ascertain whether expression of CCR7 on the surface of
CD19 t-haNK cells enabled a chemotactic response to a gradient of
the chemokine CCL19 generated by K562''° cells, an in vitro Trans-
well migration assay was performed, where the Transwell was coated
with a layer of Matrigel. After an overnight incubation, CCR7_CD19 t-
haNK cells displayed a significant increase in migration toward
CCL19-expressing K562 cells compared with wild-type K562 cells
(4.8 + 0.6-fold, P < 0.001), whereas parental aNK cells did not
(Figure 3).

For in vivo studies, a cohort of NSG mice was injected subcutane-
ously with K562°“*° cells. When the tumors became measurable,
half of the cohort was injected intravenously via the tail vein with
CFSE-labeled CD19 t-haNK cells, whereas the other half was injected
with CSFE-labeled CCR7_CD19 t-haNK cells. The presence of tumor-
infiltrating CSFE-labeled cells was detected by flow cytometry at 3 h
and 24 h post-intravenous infusion. At 3 h, K562°“*® tumors har-
bored significantly more infiltrating CCR7_CD19 t-haNK cells than
CD19 t-haNK cells (Figure 4A). The difference in numbers of tumor-
infiltrating cells between the two arms was no longer significant at
24 h, although mice in the CD19 t-haNK arm displayed a much higher
variability between individual tumors than those in the CCR7_CD19
t-haNK arm (Figure 4B).

Treatment with CCR7_CD19 t-haNK cells increases survival in a mouse
model of systemic lymphoma

The authors next evaluated whether CCR7_CD19 t-haNK cells
could increase localized killing of tumor cells in an in vivo model of
lymphoma. NSG mice were injected intravenously with CCL19-
expressing Raji cells (which are CD19+). Three days later, mice were
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all efficiently lyse K562. (B) The CCR7_CD19 t-haNK and CD19 t-haNK cell lines both show efficient targeted killing of the CD19+ SUP-B15 cell line, which is resistant to non-CAR-
expressing aNK cells. (C) CD19 t-haNK cells and (D) CCR7_CD19 t-haNK cells both mediate specific and robust ADCC against a SUP-B15P19K0/€D20+ yarjant line when combined with
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#P > 0.05,*P < 0.05.

treated with a biweekly intravenous injection regimen of CCR7_CD19
CAR t-haNK cells, CD19 t-haNK cells or vehicle control for four conse-
cutive weeks. The vehicle-treated group had to be euthanised
between 21 days and 22 days post-inoculation, displaying hind leg
paralysis and other signs consistent with high tumor burden or
tumor invasion of the spinal cord. The CD19 t-haNK-treated group
showed a moderate (but significant) increase in survival (+2.5 days, P
< 0.001), although almost all mice had to be euthanised at day 24.
The CCR7_CD19 t-haNK-treated group showed significantly increased
survival (+6.5 days, P < 0.0001) and delayed morbidity compared
with the vehicle and CD19 t-haNK groups (Figure 5).

Systemic treatment with CCR7_CD19 t-haNK cells delays growth of local
CCL19-expressing Raji tumors

NSG mice were injected subcutaneously in one flank with CCL19-
expressing Raji“''® cells. Three weeks after inoculation, when the
average tumor volume reached approximately 190 mm?, mice were
treated with a biweekly intravenous injection regimen of CCR7_CD19
t-haNK cells, CD19 t-haNK cells or vehicle control for the duration of
the experiment. The CCR7_CD19 t-haNK-treated cohort displayed a
clear trend toward better control of tumor progression (mean TGI,
30.6%) compared with the CD19 t-haNK and vehicle groups
(Figure 6A,B); however, this did not reach statistical significance. Sur-
prisingly, stratification of the data according to tumor volume at the

time of randomization (i.e., 3 weeks post-tumor inoculation, day 0)
showed that mice with a tumor size above the median value (>150
mm?) that were treated with CCR7_CD19 t-haNK cells displayed sig-
nificantly slower tumor progression than the vehicle-treated group
compared with mice with a tumor size under the median (901 + 328
mm? in CCR7_CD19 t-haNK arm versus 1778 + 628 mm® in vehicle
arm at day 9, P =0.038) (Figure 6C).

Discussion

Although CAR T cells have been relatively successful in the treat-
ment of lymphoma, late relapse of the disease and safety issues
(especially cytokine release syndrome and neurotoxicity) continue to
be a concern and are currently guiding the development of the next
generation of engineered CAR T cells [28]. CAR-engineered NK cells
are considered safer, but obtaining sufficient numbers of NK cells
from peripheral blood continues to be a challenge. Moreover, like
CART cells, blood NK cells require viral vectors for efficient transfec-
tion of CAR transgenes. The NK-92 cell line (aNK) can be grown in
large numbers under Good Manufacturing Practice conditions, and
more than 50 patients with advanced cancers have received aNK cell
infusions [15—-18]. No adverse events greater than grade 2 were
observed in these patients, and a significant tumor response was
seen in some patients.
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Clinical-grade NK-92 cells (aNK) can be easily and reproducibly
engineered genetically through electroporation with non-viral plas-
mids. The first generation of engineered aNK cells express a high-
affinity Fc receptor (CD16-158V) variant together with a non-
secreted ERIL-2, and these haNK cells are currently being tested in
clinical trials in combination with avelumab as treatment for patients
with Merkel cell cancer (NCT03853317). The second generation of
engineered aNK cells co-express a CAR in addition to CD16-158V and
ERIL-2 and are referred to as t-haNK cells. Several clinical-grade t-
haNK cell lines have been generated, with PD-L1 t-haNK cells now in
clinical trials for indications such as advanced pancreatic cancer
(NCT04390399), triple-negative breast cancer and non-small cell
lung cancer.

To augment the homing properties of CD19 t-haNK cells and fur-
ther increase their clinical efficacy, the authors have engineered a
third generation of clinical-grade aNK cells with a quadricistronic
plasmid to make them co-express the chemokine receptor CCR7 in
addition to CD19 CAR, CD16-158V and ERIL-2. Expression of CCR7
enables recognition of CCL19 and CCL21 chemokine gradients and
induction of migration toward their sources. In a Transwell assay,
these CCR7_CD19 t-haNK cells showed increased migration through
extracellular matrix toward CCL19-expressing target cells. This
increased migration toward CCL19-expressing K562 cells was also
observed in vivo, although only at less than 24 h post-infusion. This
could suggest a difference in the kinetics of tumor infiltration, where
CCR7-expressing cells would undergo an active and rapid migration
to the tumor site, whereas non-CCR7-expressing cells would infiltrate
tumors more slowly and in a more stochastic fashion. Moreover,
when CCR7_CD19 t-haNK cells were injected into NSG mice that had
been inoculated with CCL19-secreting Raji lymphoma cells, increased
tumor control and survival were seen in both local and systemic
tumor models compared with mice treated with CD19 t-haNK cells
not expressing the CCR7 receptor and control mice. A surprising

observation was that larger subcutaneous tumors (>150 mm? at the
beginning of treatment) appeared to be more sensitive to CCR7_CD19
t-haNK injections than their smaller counterparts. Since larger
tumors are likely to be more vascularized, it is possible that they also
allow infiltration of higher numbers of circulating t-haNK cells. Alter-
natively, larger CCL19-secreting Raji tumors may produce a stronger
gradient of CCL19, which would drive more efficient tumor homing
and infiltration of CCR7-expressing t-haNK cells. Further in vivo work
using labeled t-haNK cells would be warranted to explore these
hypotheses.

CAR-expressing t-haNK cells have significant advantages over CAR
T cells. In addition to the lower occurrence of adverse events associ-
ated with NK cells, the quadricistronic t-haNK cells presented here
not only have increased targeted homing to lymphoma tissue but
also provide specific CAR-directed killing and ADCC. These cells also
maintain spontaneous cytotoxicity through expression of “natural”
NK receptors such as NKG2D, which binds to the family of major his-
tocompatibility complex class I chain-related stress molecules often
overexpressed on cancer cells. These multiple modalities of tumor
cell recognition can circumvent the loss of effective targeting due to
antigen downregulation.

The aNK cells and aNK-derived haNK and t-haNK cell lines can be
easily expanded in conventional bioreactors, and large quantities of
this powerful cytotoxic cell product can be generated over a rela-
tively short period. The logistics are also simplified by the fact that
the cells can be cryopreserved without losing activity upon thawing.
Although these cell lines, because of the malignant lymphoma origin
of NK-92, require low-dose irradiation for inactivation before infu-
sion, irradiated cells maintain functionality for an additional 24—48
h, which guides the twice-weekly treatment schedule.

Increased expression of homing receptors on CAR T cells has pre-
viously been shown to improve anti-tumor activity in a Hodgkin
tumor model [29], and there is broad evidence that immune cells



N.T. Schomer et al. / Cytotherapy 00 (2022) 1-8

Wi
le .
| SR =
| VLY VRN als
e oS 5-0’
Week 1 Week 2
d-21 do o :
t f t ! !
SC injection IV injections
2.5x10% Rajiccv® 1x107 NK cells
A Vehicle CD19 t-haNK CCR7_CD19 t-haNK
ae 4000 a A~ 4000
: E :
g 3000 é g 3000
2 2000 2 2 2000 . .
g s S . e
§ 1000 g 5 1000 =
: § =
- 0 - - 04— > = = -
0 5 10 15 0 5 10 15
Days post treatment Days post treatment Days post treatment
B Average Tumor Volume at Day 9 C Average Tumor Violume at Day 9
3000 p=0131 (>150 mn’)
- i p=0 141 52 30004 p= 0038
E . ™ ﬂg e p=0.10
: 2000+ . ']' E 20004 - -
;g . . -)3 —pe .
= 10004 [ — aE % 10004 4 =T I
§ o3 s —pa § . S
- | - Al‘ P i
o . - a®
Vehicle CD19 CCR7_CD19 Vehicle CD19 CCR7_CD19
t-haNK t-haNK t-haNK t-haNK

Fig. 6. CCR7_CD19 t-haNK cells significantly increase survival in a subcutaneous lymphoma mouse model. NSG mice were injected subcutaneously with 2 x 10° Raji"'° cells and
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consecutive weeks. (A) Tumor volume progression for all cohorts. (B) Tumor volume at day 9 post-treatment. (C) Tumor volume at day 9 post-treatment for mice with initial tumor

size >150 mm?>. IV, intravenous; SC, subcutaneous.

expressing or overexpressing the CCR7 chemokine receptor preferen-
tially home to lymphoma sites that express the CCL19 and CCL21
ligands. Earlier studies had confirmed that CCR7 was expressed by
almost all CD56"8"t NK cells but was not detected on CD56%™ NK
cells [30]. NK cell reprogramming using electroporation of messenger
RNA coding for the chemokine receptor CCR7 resulted in augmented
NK cell migration toward the lymph node-associated chemokine
CCL19 [11]. Loss of CCR7 on CD56""8" NK cells correlates negatively
with HIV viral load in in vitro models, suggesting the relevance of this
chemokine receptor—ligand interaction for virally infected cells
[31,32]. It has also been demonstrated that NK cells exposed to a
microenvironment rich in IL-18 can de novo express/upregulate CCR7
and acquire the ability to respond to the lymph node chemokines
CCL19 and CCL21 [10]. Conversely, a recent study showed that NK
cells expanded ex vivo on feeder layers downregulate CCR7 expres-
sion, which could impair their ability to home toward secondary lym-
phoid organs [33]. In addition to the CCR7/CCL19 homing pathway in
lymphoma, other tumors may benefit from the inclusion of a specific
homing receptor in CAR NK cells to augment the cytotoxic CAR effect
[9].

Efficient homing of immune cells to primary and metastatic tumor
locations is still a challenge for current adoptive cellular

immunotherapy. NK-92-derived t-haNK cells engineered to co-
express a CD19-targeted CAR and the CCR7 chemokine receptor dis-
play enhanced migration toward CCL19-expressing tumor sites,
improved tumor control and increased survival in a lymphoma
mouse model compared with t-haNK cells that express only CD19
CAR. The present study demonstrates the feasibility and potential
therapeutic benefit of an “off-the-shelf” cellular immunotherapy spe-
cifically engineered to improve both homing and targeted cytotoxic-
ity in a single therapeutic.
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